Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 220
Filtrar
1.
Crit Care Med ; 50(2): 307-316, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473657

RESUMO

OBJECTIVES: Fluid therapy is an important component of intensive care management, however, optimal fluid management is unknown. The relationship between fluid balance and ventilator-associated events has not been well established. This study investigated the dose-response relationship between fluid balance and ventilator-associated events. DESIGN: Nested case-control study. SETTING: The study was based on a well-established, research-oriented registry of healthcare-associated infections at ICUs of West China Hospital system (Chengdu, China). PATIENTS: A total of 1,528 ventilator-associated event cases with 3,038 matched controls, who consistently underwent mechanical ventilation for at least 4 days from April 1, 2015, to December 31, 2018, were included. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: We calculated cumulative fluid balance within 4 days prior to ventilator-associated event occurrence. A weighted Cox proportional hazards model with restricted cubic splines was used to evaluate the dose-response relationship. A nonlinear relationship between fluid balance and all three tiers of ventilator-associated events, patients with fluid balance between -1 and 0 L had the lowest risk (p < 0.05 for nonlinear test). The risk of ventilator-associated event was significantly higher in patients with positive fluid balance (4 d cumulative fluid balance: 1 L: 1.19; 3 L: 1.92; 5 L: 2.58; 7 L: 3.24), but not in those with negative fluid balance (-5 L: 1.34; -3 L: 1.14; -1 L: 0.98). CONCLUSIONS: There was nonlinear relationship between fluid balance and all three tiers of ventilator-associated event, with an fluid balance between -1 and 0 L corresponding to the lowest risk. Positive but not negative fluid balance increased the risk of ventilator-associated events, with higher positive fluid balance more likely to lead to ventilator-associated events.


Assuntos
Respiração Artificial/efeitos adversos , Ventiladores Mecânicos/efeitos adversos , Equilíbrio Hidroeletrolítico/fisiologia , Idoso , Estudos de Casos e Controles , China/epidemiologia , Feminino , Hidratação/efeitos adversos , Hidratação/métodos , Hidratação/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Respiração Artificial/instrumentação , Ventiladores Mecânicos/estatística & dados numéricos , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
3.
PLoS One ; 16(4): e0249285, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33793600

RESUMO

BACKGROUND: The Coronavirus disease 2019 (COVID-19) pandemic has affected millions of people across the globe. It is associated with a high mortality rate and has created a global crisis by straining medical resources worldwide. OBJECTIVES: To develop and validate machine-learning models for prediction of mechanical ventilation (MV) for patients presenting to emergency room and for prediction of in-hospital mortality once a patient is admitted. METHODS: Two cohorts were used for the two different aims. 1980 COVID-19 patients were enrolled for the aim of prediction ofMV. 1036 patients' data, including demographics, past smoking and drinking history, past medical history and vital signs at emergency room (ER), laboratory values, and treatments were collected for training and 674 patients were enrolled for validation using XGBoost algorithm. For the second aim to predict in-hospital mortality, 3491 hospitalized patients via ER were enrolled. CatBoost, a new gradient-boosting algorithm was applied for training and validation of the cohort. RESULTS: Older age, higher temperature, increased respiratory rate (RR) and a lower oxygen saturation (SpO2) from the first set of vital signs were associated with an increased risk of MV amongst the 1980 patients in the ER. The model had a high accuracy of 86.2% and a negative predictive value (NPV) of 87.8%. While, patients who required MV, had a higher RR, Body mass index (BMI) and longer length of stay in the hospital were the major features associated with in-hospital mortality. The second model had a high accuracy of 80% with NPV of 81.6%. CONCLUSION: Machine learning models using XGBoost and catBoost algorithms can predict need for mechanical ventilation and mortality with a very high accuracy in COVID-19 patients.


Assuntos
COVID-19/mortalidade , Aprendizado de Máquina , Pandemias/estatística & dados numéricos , Respiração Artificial/estatística & dados numéricos , Ventiladores Mecânicos/estatística & dados numéricos , Idoso , Serviço Hospitalar de Emergência/tendências , Feminino , Mortalidade Hospitalar/tendências , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
4.
Rinsho Shinkeigaku ; 61(3): 161-165, 2021 Mar 25.
Artigo em Japonês | MEDLINE | ID: mdl-33627584

RESUMO

We analyzed the records of inpatients with amyotrophic lateral sclerosis (ALS) treated at 27 specialized institutions for muscular dystrophy in Japan from 1999 to 2013 registered in a database on October 1 of each year. The total number of ALS inpatients in 1999 was 29, then that showed rapid increases in 2006 and 2007, and reached 164 in 2013. Age regardless of year was predominantly greater than 50 years. In 1999, the respirator dependent rate was 68.9% and then increased to 92.7% in 2013, while the oral nutritional supply rate was 41.4% in 1999 and decreased to 10.4% in 2013. The number of deaths from 2000 to 2013 was 118. Cause of death was respiratory failure in 26 of 30 patients who maintained voluntary respiration at the time of death and in 5 of 6 with non-invasive ventilation. On the other hand, the main cause of death in patients with tracheostomy invasive ventilation was respiratory infection, which was noted in 26 of 82, while other causes varied. It is expected that the number of ALS patients admitted to specialized institutions with muscular dystrophy wards will continue to increase.


Assuntos
Esclerose Lateral Amiotrófica/mortalidade , Esclerose Lateral Amiotrófica/terapia , Causas de Morte/tendências , Atenção à Saúde/estatística & dados numéricos , Atenção à Saúde/tendências , Pacientes Internados/estatística & dados numéricos , Quartos de Pacientes/estatística & dados numéricos , Esclerose Lateral Amiotrófica/epidemiologia , Japão/epidemiologia , Insuficiência Respiratória/mortalidade , Infecções Respiratórias/mortalidade , Fatores de Tempo , Ventiladores Mecânicos/estatística & dados numéricos
5.
J Diabetes Sci Technol ; 15(5): 1005-1009, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33593089

RESUMO

The COVID-19 pandemic raised distinct challenges in the field of scarce resource allocation, a long-standing area of inquiry in the field of bioethics. Policymakers and states developed crisis guidelines for ventilator triage that incorporated such factors as immediate prognosis, long-term life expectancy, and current stage of life. Often these depend upon existing risk factors for severe illness, including diabetes. However, these algorithms generally failed to account for the underlying structural biases, including systematic racism and economic disparity, that rendered some patients more vulnerable to these conditions. This paper discusses this unique ethical challenge in resource allocation through the lens of care for patients with severe COVID-19 and diabetes.


Assuntos
COVID-19/terapia , Complicações do Diabetes/terapia , Diabetes Mellitus/terapia , Alocação de Recursos , COVID-19/complicações , COVID-19/epidemiologia , Complicações do Diabetes/economia , Complicações do Diabetes/epidemiologia , Diabetes Mellitus/economia , Diabetes Mellitus/epidemiologia , Acessibilidade aos Serviços de Saúde/economia , Acessibilidade aos Serviços de Saúde/ética , Acessibilidade aos Serviços de Saúde/normas , Acessibilidade aos Serviços de Saúde/estatística & dados numéricos , Disparidades nos Níveis de Saúde , Disparidades em Assistência à Saúde/economia , Disparidades em Assistência à Saúde/ética , Disparidades em Assistência à Saúde/organização & administração , Disparidades em Assistência à Saúde/estatística & dados numéricos , Humanos , Pandemias , Racismo/ética , Racismo/estatística & dados numéricos , Alocação de Recursos/economia , Alocação de Recursos/ética , Alocação de Recursos/organização & administração , Alocação de Recursos/estatística & dados numéricos , Triagem/economia , Triagem/ética , Estados Unidos/epidemiologia , Ventiladores Mecânicos/economia , Ventiladores Mecânicos/estatística & dados numéricos , Ventiladores Mecânicos/provisão & distribuição
6.
PLoS One ; 16(2): e0246720, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33596228

RESUMO

Filtering facepiece respirators (FFRs) and medical masks are widely used to reduce the inhalation exposure of airborne particulates and biohazardous aerosols. Their protective capacity largely depends on the fraction of these that are filtered from the incoming air volume. While the performance and physics of different filter materials have been the topic of intensive study, less well understood are the effects of mask sealing. To address this, we introduce an approach to calculate the influence of face-seal leakage on filtration ratio and fit factor based on an analytical model and a finite element method (FEM) model, both of which take into account time-dependent human respiration velocities. Using these, we calculate the filtration ratio and fit factor for a range of ventilation resistance values relevant to filter materials, 500-2500 Pa∙s∙m-1, where the filtration ratio and fit factor are calculated as a function of the mask gap dimensions, with good agreement between analytical and numerical models. The results show that the filtration ratio and fit factor are decrease markedly with even small increases in gap area. We also calculate particle filtration rates for N95 FFRs with various ventilation resistances and two commercial FFRs exemplars. Taken together, this work underscores the critical importance of forming a tight seal around the face as a factor in mask performance, where our straightforward analytical model can be readily applied to obtain estimates of mask performance.


Assuntos
Filtração/métodos , Dispositivos de Proteção Respiratória/estatística & dados numéricos , Aerossóis/análise , Filtros de Ar , Desenho de Equipamento , Análise de Elementos Finitos , Humanos , Exposição por Inalação/análise , Máscaras/estatística & dados numéricos , Máscaras/tendências , Teste de Materiais/métodos , Modelos Teóricos , Respiradores N95/estatística & dados numéricos , Tamanho da Partícula , Respiração , Dispositivos de Proteção Respiratória/normas , Ventiladores Mecânicos/estatística & dados numéricos , Ventiladores Mecânicos/tendências
7.
Occup Environ Med ; 78(9): 679-690, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33504624

RESUMO

OBJECTIVES: To synthesise evidence concerning the range of filtering respirators suitable for patient care and guide the selection and use of different respirator types. DESIGN: Comparative analysis of international standards for respirators and rapid review of their performance and impact in healthcare. DATA SOURCES: Websites of international standards organisations, Medline and Embase, hand-searching of references and citations. STUDY SELECTION: Studies of healthcare workers (including students) using disposable or reusable respirators with a range of designs. We examined respirator performance, clinician adherence and performance, comfort and impact, and perceptions of use. RESULTS: We included standards from eight authorities across Europe, North and South America, Asia and Australasia and 39 research studies. There were four main findings. First, international standards for respirators apply across workplace settings and are broadly comparable across jurisdictions. Second, effective and safe respirator use depends on proper fitting and fit testing. Third, all respirator types carry a burden to the user of discomfort and interference with communication which may limit their safe use over long periods; studies suggest that they have little impact on specific clinical skills in the short term but there is limited evidence on the impact of prolonged wearing. Finally, some clinical activities, particularly chest compressions, reduce the performance of filtering facepiece respirators. CONCLUSION: A wide range of respirator types and models is available for use in patient care during respiratory pandemics. Careful consideration of performance and impact of respirators is needed to maximise protection of healthcare workers and minimise disruption to care.


Assuntos
COVID-19/epidemiologia , Equipamentos Descartáveis/estatística & dados numéricos , Reutilização de Equipamento/estatística & dados numéricos , Ventiladores Mecânicos/estatística & dados numéricos , Equipamentos Descartáveis/normas , Reutilização de Equipamento/normas , Pessoal de Saúde/estatística & dados numéricos , Humanos , Pandemias/estatística & dados numéricos , Ventiladores Mecânicos/normas
8.
AANA J ; 89(1): 62-69, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33501910

RESUMO

The coronavirus disease 2019 (COVID-19) respiratory illness has increased the amount of people needing airway rescue and the support of mechanical ventilators. In doing so, the pandemic has increased the demand of healthcare professionals to manage these critically ill individuals. Certified Registered Nurse Anesthetists (CRNAs), who are trained experts in airway management and mechanical ventilation with experience in intensive care units (ICUs), rise to this challenge. However, many CRNAs may be unfamiliar with advancements in critical care ventilators. The purpose of this review is to provide a resource for CRNAs returning to the ICU to manage patients requiring invasive mechanical ventilation. The most common ventilator modes found in anesthesia machine ventilators and ICU ventilators are reviewed, as are the lung-protective ventilation strategies, including positive end-expiratory pressure, used to manage patients with COVID-19-induced acute respiratory distress syndrome. Adjuncts to mechanical ventilation, recruitment maneuvers, prone positioning, and extracorporeal membrane oxygenation are also reviewed. More research is needed concerning the management of COVID-19-infected patients, and CRNAs must become familiar with their ICU units' individual ventilator machine, but this brief review provides a good place to start for those returning to the ICU.


Assuntos
Anestesia/estatística & dados numéricos , Anestesia/normas , COVID-19/terapia , Cuidados Críticos/normas , Respiração Artificial/normas , Síndrome do Desconforto Respiratório/terapia , Ventiladores Mecânicos/normas , Cuidados Críticos/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Pandemias , Guias de Prática Clínica como Assunto , Respiração Artificial/estatística & dados numéricos , SARS-CoV-2 , Ventiladores Mecânicos/estatística & dados numéricos
9.
Chest ; 159(2): 634-652, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32971074

RESUMO

BACKGROUND: Early in the coronavirus disease 2019 (COVID-19) pandemic, there was serious concern that the United States would encounter a shortfall of mechanical ventilators. In response, the US government, using the Defense Production Act, ordered the development of 200,000 ventilators from 11 different manufacturers. These ventilators have different capabilities, and whether all are able to support COVID-19 patients is not evident. RESEARCH QUESTION: Evaluate ventilator requirements for affected COVID-19 patients, assess the clinical performance of current US Strategic National Stockpile (SNS) ventilators employed during the pandemic, and finally, compare ordered ventilators' functionality based on COVID-19 patient needs. STUDY DESIGN AND METHODS: Current published literature, publicly available documents, and lay press articles were reviewed by a diverse team of disaster experts. Data were assembled into tabular format, which formed the basis for analysis and future recommendations. RESULTS: COVID-19 patients often develop severe hypoxemic acute respiratory failure and adult respiratory defense syndrome (ARDS), requiring high levels of ventilator support. Current SNS ventilators were unable to fully support all COVID-19 patients, and only approximately half of newly ordered ventilators have the capacity to support the most severely affected patients; ventilators with less capacity for providing high-level support are still of significant value in caring for many patients. INTERPRETATION: Current SNS ventilators and those on order are capable of supporting most but not all COVID-19 patients. Technologic, logistic, and educational challenges encountered from current SNS ventilators are summarized, with potential next-generation SNS ventilator updates offered.


Assuntos
COVID-19/terapia , Respiração Artificial/métodos , Síndrome do Desconforto Respiratório/terapia , Insuficiência Respiratória/terapia , Estoque Estratégico , Ventiladores Mecânicos/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva , Respiração Artificial/instrumentação , SARS-CoV-2 , Estados Unidos , Ventiladores Mecânicos/normas , Ventiladores Mecânicos/provisão & distribuição
10.
Trials ; 21(1): 883, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33106167

RESUMO

OBJECTIVES: General: To assess the safety, efficacy and dose response of convalescent plasma (CP) transfusion in severe COVID-19 patients Specific: a. To identify the appropriate effective dose of CP therapy in severe patients b. To identify the efficacy of the therapy with their end point based on clinical improvement within seven days of treatment or until discharge whichever is later and in-hospital mortality c. To assess the clinical improvement after CP transfusion in severe COVID-19 patients d. To assess the laboratory improvement after CP transfusion in severe COVID-19 patients TRIAL DESIGN: This is a multicentre, multi-arm phase II Randomised Controlled Trial. PARTICIPANTS: Age and sex matched COVID-19 positive (by RT-PCR) severe cases will be enrolled in this trial. Severe case is defined by the World Health Organization (W.H.O) clinical case definition. The inclusion criteria are 1. Respiratory rate > 30 breaths/min; PLUS 2. Severe respiratory distress; or SpO2 ≤ 88% on room air or PaO2/FiO2≤ 300 mm of Hg, PLUS 3. Radiological (X-ray or CT scan) evidence of bilateral lung infiltrate, AND OR 4. Systolic BP < 90 mm of Hg or diastolic BP <60 mm of Hg. AND/OR 5. Criteria 1 to 4 AND or patient in ventilator support Patients' below18 years, pregnant and lactating women, previous history of allergic reaction to plasma, patients who have already received plasma from a different source will be excluded. Patients will be enrolled at Bangabandhu Sheikh Mujib Medical University (BSMMU) hospital, Dhaka medical college hospital (DMCH) and Mugda medical college hospital (MuMCH). Apheretic plasma will be collected at the transfusion medicine department of SHNIBPS hospital, ELISA antibody titre will be done at BSMMU and CMBT and neutralizing antibody titre will be checked in collaboration with the University of Oxford. Patients who have recovered from COVID-19 will be recruited as donors of CP. The recovery criteria are normality of body temperature for more than 3 days, resolution of respiratory symptoms, two consecutively negative results of sputum SARS-CoV-2 by RT-PCR assay (at least 24 hours apart) 22 to 35 days of post onset period, and neutralizing antibody titre ≥ 1:160. INTERVENTION AND COMPARATOR: This RCT consists of three arms, a. standard care, b. standard care and 200 ml CP and c. standard care and 400 ml CP. Patients will receive plasma as a single transfusion. Intervention arms will be compared to the standard care arm. MAIN OUTCOMES: The primary outcome will be time to clinical improvement within seven days of treatment or until discharge whichever is later and in-hospital mortality. The secondary outcome would be improvement of laboratory parameters after therapy (neutrophil, lymphocyte ratio, CRP, serum ferritin, SGPT, SGOT, serum creatinine and radiology), length of hospital stay, length of ICU stay, reduction in proportion of deaths, requirement of ventilator and duration of oxygen and ventilator support. RANDOMISATION: Randomization will be done by someone not associated with the care or assessment of the patients by means of a computer generated random number table using an allocation ratio of 1:1:1. BLINDING (MASKING): This is an open level study; neither the physician nor the patients will be blinded. However, the primary and secondary outcome (oxygen saturations, PaO2/FiO2, BP, day specific laboratory tests) will be recorded using an objective automated method; the study staff will not be able to influence the recording of these data. NUMBER TO BE RANDOMISED (SAMPLE SIZE): No similar study has been performed previously. Therefore no data are available that could be used to generate a sample size calculation. This phase II study is required to provide some initial data on efficacy and safety that will allow design of a larger study. The trial will recruit 60 participants (20 in each arm). TRIAL STATUS: Protocol version 1.4 dated May 5, 2020 and amended version 1.5, dated June 16, 2020. First case was recruited on May 27, 2020. By August 10, 2020, the trial had recruited one-third (21 out of 60) of the participants. The recruitment is expected to finish by October 31, 2020. TRIAL REGISTRATION: Clinicaltrials.gov ID: NCT04403477 . Registered 26 May, 2020 FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trial's website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this letter serves as a summary of the key elements of the full protocol.


Assuntos
Betacoronavirus/genética , Transfusão de Sangue/métodos , Infecções por Coronavirus/terapia , Pneumonia Viral/terapia , Bangladesh/epidemiologia , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Relação Dose-Resposta Imunológica , Feminino , Mortalidade Hospitalar/tendências , Humanos , Imunização Passiva/efeitos adversos , Imunização Passiva/métodos , Masculino , Pandemias , Alta do Paciente/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , SARS-CoV-2 , Segurança , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento , Ventiladores Mecânicos/estatística & dados numéricos , Soroterapia para COVID-19
11.
Pharmacol Res Perspect ; 8(6): e00666, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33084232

RESUMO

Conflicting evidence exists about the effect of angiotensin-converting enzyme inhibitors (ACEIs)/angiotensin receptor blockers (ARBs) on COVID-19 clinical outcomes. We aimed to provide a comprehensive/updated evaluation of the effect of ACEIs/ARBs on COVID-19-related clinical outcomes, including exploration of interclass differences between ACEIs and ARBs, using a systematic review/meta-analysis approach conducted in Medline (OVID), Embase, Scopus, Cochrane library, and medRxiv from inception to 22 May 2020. English studies that evaluated the effect of ACEIs/ARBs among patients with COVID-19 were included. Studies' quality was appraised using the Newcastle-Ottawa Scale. Data were analyzed using the random-effects modeling stratified by exposure (ACEIs/ARBs, ACEIs, and ARBs). Heterogeneiity was assessed using I2 statistic. Several subgroup analyses were conducted to explore the impact of potential confounders. Overall, 27 studies were eligible. The pooled analyses showed nonsignificant associations between ACEIs/ARBs and death (OR:0.97, 95%CI:0.75,1.27), ICU admission (OR:1.09;95%CI:0.65,1.81), death/ICU admission (OR:0.67; 95%CI:0.52,0.86), risk of COVID-19 infection (OR:1.01; 95%CI:0.93,1.10), severe infection (OR:0.78; 95%CI:0.53,1.15), and hospitalization (OR:1.15; 95%CI:0.81,1.65). However, the subgroup analyses indicated significant association between ACEIs/ARBs and hospitalization among USA studies (OR:1.59; 95%CI:1.03,2.44), peer-reviewed (OR:1.93, 95%CI:1.38,2.71), good quality and studies which reported adjusted measure of effect (OR:1.30, 95%CI:1.10,1.50). Significant differences were found between ACEIs and ARBs with the latter being significantly associated with lower risk of acquiring COVID-19 infection (OR:0.24; 95%CI: 0.17,0.34). In conclusion, high-quality evidence exists for the effect of ACEIs/ARBs on some COVID-19 clinical outcomes. For the first time, we provided evidence, albeit of low quality, on interclass differences between ACEIs and ARBs for some of the reported clinical outcomes.


Assuntos
Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Betacoronavirus/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Infecções por Coronavirus/mortalidade , Pneumonia Viral/mortalidade , Adulto , Idoso , Antagonistas de Receptores de Angiotensina/efeitos adversos , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/efeitos adversos , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , COVID-19 , Doenças Cardiovasculares/complicações , Comorbidade , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Feminino , Mortalidade Hospitalar/tendências , Hospitalização/estatística & dados numéricos , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Estudos Observacionais como Assunto , Avaliação de Resultados em Cuidados de Saúde , Pandemias , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Medição de Risco , SARS-CoV-2 , Ventiladores Mecânicos/efeitos adversos , Ventiladores Mecânicos/estatística & dados numéricos
14.
Respir Care ; 65(9): 1378-1381, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879035

RESUMO

COVID-19 is devastating health systems globally and causing severe ventilator shortages. Since the beginning of the outbreak, the provision and use of ventilators has been a key focus of public discourse. Scientists and engineers from leading universities and companies have rushed to develop low-cost ventilators in hopes of supporting critically ill patients in developing countries. Philanthropists have invested millions in shipping ventilators to low-resource settings, and agencies such as the World Health Organization and the World Bank are prioritizing the purchase of ventilators. While we recognize the humanitarian nature of these efforts, merely shipping ventilators to low-resource environments may not improve outcomes of patients and could potentially cause harm. An ecosystem of considerable technological and human resources is required to support the usage of ventilators within intensive care settings. Medical-grade oxygen supplies, reliable electricity, bioengineering support, and consumables are all needed for ventilators to save lives. However, most ICUs in resource-poor settings do not have access to these resources. Patients on ventilators require continuous monitoring from physicians, nurses, and respiratory therapists skilled in critical care. Health care workers in many low-resource settings are already exceedingly overburdened, and pulling these essential human resources away from other critical patient needs could reduce the overall quality of patient care. When deploying medical devices, it is vital to align the technological intervention with the clinical reality. Low-income settings often will not benefit from resource-intensive equipment, but rather from contextually appropriate devices that meet the unique needs of their health systems.


Assuntos
Infecções por Coronavirus/epidemiologia , Disparidades em Assistência à Saúde/economia , Pandemias/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Pobreza/estatística & dados numéricos , Ventiladores Mecânicos/estatística & dados numéricos , COVID-19 , Infecções por Coronavirus/terapia , Cuidados Críticos/organização & administração , Países em Desenvolvimento , Feminino , Recursos em Saúde/economia , Humanos , Unidades de Terapia Intensiva/organização & administração , Masculino , Nigéria , Pneumonia Viral/terapia , Nações Unidas , Ventiladores Mecânicos/economia , Organização Mundial da Saúde
15.
J Hosp Infect ; 106(2): 277-282, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32745590

RESUMO

BACKGROUND: The shortage of single-use N95 respirator masks (NRMs) during the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has prompted consideration of NRM recycling to extend limited stocks by healthcare providers and facilities. AIM: To assess potential reuse via autoclaving of NRMs worn daily in a major urban Canadian hospital. METHODS: NRM reusability was assessed following collection from volunteer staff after 2-8 h use, sterilization by autoclaving and PortaCount fit testing. A workflow was developed for reprocessing hundreds of NRMs daily. FINDINGS: Used NRMs passed fit testing after autoclaving once, with 86% passing a second reuse/autoclave cycle. A separate cohort of used masks pre-warmed before autoclaving passed fit testing. To recycle 200-1000 NRMs daily, procedures for collection, sterilization and re-distribution were developed to minimize particle aerosolization risk during NRM handling, to reject NRM showing obvious wear, and to promote adoption by staff. NRM recovery ranged from 49% to 80% across 12 collection cycles. CONCLUSION: Reuse of NRMs is feasible in major hospitals and other healthcare facilities. In sharp contrast to studies of unused NRMs passing fit testing after 10 autoclave cycles, we show that daily wear substantially reduces NRM fit, limiting reuse to a single cycle, but still increasing NRM stocks by ∼66%. Such reuse requires development of a comprehensive plan that includes communication across staffing levels, from front-line workers to hospital administration, to increase the collection, acceptance of and adherence to sterilization processes for NRM recovery.


Assuntos
Infecções por Coronavirus/prevenção & controle , Desenho de Equipamento/normas , Reutilização de Equipamento/normas , Hospitais Urbanos/normas , Controle de Infecções/normas , Máscaras/normas , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Dispositivos de Proteção Respiratória/normas , Ventiladores Mecânicos/normas , Betacoronavirus , COVID-19 , Canadá/epidemiologia , Infecções por Coronavirus/epidemiologia , Desenho de Equipamento/estatística & dados numéricos , Reutilização de Equipamento/estatística & dados numéricos , Hospitais Urbanos/estatística & dados numéricos , Humanos , Controle de Infecções/métodos , Máscaras/estatística & dados numéricos , Exposição Ocupacional/normas , Exposição Ocupacional/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Dispositivos de Proteção Respiratória/estatística & dados numéricos , SARS-CoV-2 , Ventiladores Mecânicos/estatística & dados numéricos
16.
s.l; Organización Panamericana de la Salud; ago. 11, 2020. 32 p.
Não convencional em Espanhol | LILACS | ID: biblio-1117100

RESUMO

A la fecha, se reportan 22.450 pacientes (29,4%) en aislamiento domiciliario, 1.669 pacientes (2,2%) se encuentran hospitalizados (1.509 en sala general y 160 en Unidades de Cuidado Intensivo -UCI). Se informan 50.665 casos (66,3%) como recuperados.


Assuntos
Humanos , Pneumonia Viral/epidemiologia , Ventiladores Mecânicos/estatística & dados numéricos , Infecções por Coronavirus/epidemiologia , Pandemias/estatística & dados numéricos , Betacoronavirus , Número de Leitos em Hospital/estatística & dados numéricos , Unidades de Terapia Intensiva/estatística & dados numéricos , Panamá/epidemiologia
17.
Emerg Infect Dis ; 26(10): 2361-2369, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32692648

RESUMO

Social distancing orders have been enacted worldwide to slow the coronavirus disease (COVID-19) pandemic, reduce strain on healthcare systems, and prevent deaths. To estimate the impact of the timing and intensity of such measures, we built a mathematical model of COVID-19 transmission that incorporates age-stratified risks and contact patterns and projects numbers of hospitalizations, patients in intensive care units, ventilator needs, and deaths within US cities. Focusing on the Austin metropolitan area of Texas, we found that immediate and extensive social distancing measures were required to ensure that COVID-19 cases did not exceed local hospital capacity by early May 2020. School closures alone hardly changed the epidemic curve. A 2-week delay in implementation was projected to accelerate the timing of peak healthcare needs by 4 weeks and cause a bed shortage in intensive care units. This analysis informed the Stay Home-Work Safe order enacted by Austin on March 24, 2020.


Assuntos
Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Política de Saúde , Serviços de Saúde/provisão & distribuição , Serviços de Saúde/estatística & dados numéricos , Número de Leitos em Hospital , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Adolescente , Adulto , Idoso , COVID-19 , Criança , Pré-Escolar , Cidades/epidemiologia , Simulação por Computador , Infecções por Coronavirus/mortalidade , Previsões , Hospitalização/estatística & dados numéricos , Humanos , Lactente , Unidades de Terapia Intensiva/estatística & dados numéricos , Pessoa de Meia-Idade , Modelos Estatísticos , Pneumonia Viral/mortalidade , Instituições Acadêmicas , Texas/epidemiologia , Ventiladores Mecânicos/estatística & dados numéricos , Adulto Jovem
18.
J Korean Med Sci ; 35(23): e223, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32537957

RESUMO

BACKGROUND: The mortality risk of coronavirus disease 2019 (COVID-19) is higher in patients with older age, and many elderly patients are reported to require advanced respiratory support. METHODS: We reviewed medical records of 98 patients aged ≥ 65 years who were hospitalized with COVID-19 during a regional outbreak in Daegu/Gyeongsangbuk-do province of Korea. The outcome measures were in-hospital mortality and the treatment with mechanical ventilation (MV) or high-flow nasal cannula (HFNC). RESULTS: The median age of the patients was 72 years; 55.1% were female. Most (74.5%) had at least one underlying condition. Overall case fatality rate (CFR) was 20.4%, and median time to death after admission was 8 days. The CFR was 6.1% among patients aged 65-69 years, 22.7% among those aged 70-79 years, and 38.1% among those aged ≥ 80 years. The CFR among patients who required MV was 43.8%, and the proportion of patients received MV/HFNC was 28.6%. Nosocomial acquisition, diabetes, chronic lung diseases, and chronic neurologic diseases were significant risk factors for both death and MV/HFNC. Hypotension, hypoxia, and altered mental status on admission were also associated with poor outcome. CRP > 8.0 mg/dL was strongly associated with MV/HFNC (odds ratio, 26.31; 95% confidence interval, 7.78-88.92; P < 0.001), and showed better diagnostic characteristics compared to commonly used clinical scores. CONCLUSION: Patients aged ≥ 80 years had a high risk of requiring MV/HFNC, and mortality among those severe patients was very high. Severe initial presentation and laboratory abnormalities, especially high CRP, were identified as risk factors for mortality and severe hospital course.


Assuntos
Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/patologia , Hipóxia/patologia , Pneumonia Viral/mortalidade , Pneumonia Viral/patologia , Respiração Artificial/estatística & dados numéricos , Insuficiência Respiratória/mortalidade , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Betacoronavirus , Proteína C-Reativa/análise , COVID-19 , Feminino , Hospitalização , Humanos , Unidades de Terapia Intensiva , Masculino , Pandemias , República da Coreia , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Resultado do Tratamento , Ventiladores Mecânicos/estatística & dados numéricos
19.
Swiss Med Wkly ; 150: w20277, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32374886

RESUMO

In Switzerland, the COVID-19 epidemic is progressively slowing down owing to “social distancing” measures introduced by the Federal Council on 16 March 2020. However, the gradual ease of these measures may initiate a second epidemic wave, the length and intensity of which are difficult to anticipate. In this context, hospitals must prepare for a potential increase in intensive care unit (ICU) admissions of patients with acute respiratory distress syndrome. Here, we introduce icumonitoring.ch, a platform providing hospital-level projections for ICU occupancy. We combined current data on the number of beds and ventilators with canton-level projections of COVID-19 cases from two S-E-I-R models. We disaggregated epidemic projection in each hospital in Switzerland for the number of COVID-19 cases, hospitalisations, hospitalisations in ICU, and ventilators in use. The platform is updated every 3-4 days and can incorporate projections from other modelling teams to inform decision makers with a range of epidemic scenarios for future hospital occupancy.


Assuntos
Infecções por Coronavirus , Previsões/métodos , Planejamento em Saúde/métodos , Número de Leitos em Hospital , Unidades de Terapia Intensiva/provisão & distribuição , Pandemias , Pneumonia Viral , Software , Ventiladores Mecânicos/provisão & distribuição , COVID-19 , Infecções por Coronavirus/epidemiologia , Tomada de Decisões Assistida por Computador , Número de Leitos em Hospital/estatística & dados numéricos , Hospitalização/estatística & dados numéricos , Hospitalização/tendências , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Modelos Teóricos , Pandemias/estatística & dados numéricos , Admissão do Paciente/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Software/normas , Suíça/epidemiologia , Ventiladores Mecânicos/estatística & dados numéricos
20.
Ann Phys Rehabil Med ; 63(4): 376-378, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32315800
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA